Robotic-Assisted Systems in Minimally Invasive Neurosurgical Techniques: A Review

Authors

  • Yupeng Guo Department of Neurosurgery, Aviation General Hospital, Beijing, China Author
  • Xuanwei Dong Department of Neurosurgery, Aviation General Hospital, Beijing, China Author
  • Min Liu Department of Neurosurgery, Aviation General Hospital, Beijing, China Author
  • Dongsheng Liu Department of Neurosurgery, Aviation General Hospital, Beijing, China Author
  • Jianxin Wang Department of Neurosurgery, Aviation General Hospital, Beijing, China Author

DOI:

https://doi.org/10.64229/msvbj529

Keywords:

Robotic neurosurgery, Brain–computer interface, Surgical robotics, Neurobotics

Abstract

Over the last decade, the integration of robotic-assisted systems into minimally invasive neurosurgery (MIN) has significantly transformed the field of neurosurgical care. Previously constrained by the anatomical complexity, limited visibility, and surgical fatigue, but nowadays, neurosurgical care has become safer, more precise, and reproducible by the synergy of robotics, artificial intelligence (AI), and image-guided technologies. This review offers in-depth technologies in progress, clinical adoption, and future innovations in robotic-assisted neurosurgery from 2015 to 2025. It outlines the innovation from basic stereotactic frames to sophisticated robotic platforms like ROSA®, NeuroMate®, Excelsius GPS®, and Mazor X™, emphasizing their role in procedures such as deep brain stimulation, stereotactic biopsies, spinal instrumentation, and stereo-electroencephalography-guided epilepsy surgery. These technologies have led to notable advancements, including enhanced surgical precision, reduced intraoperative bleeding, decreased operating time, and fewer postoperative complications. Currently, the integration development of AI-driven technology supports the augmented and virtual reality, improved haptic interfaces, and magnetically controlled microrobots, which have broadened the capabilities of robotic neurosurgery. By synthesizing a decade of innovation, this review not only underscores the transformative potential of robotic-assisted neurosurgery but also provides a forward-looking roadmap for clinicians, researchers, and developers working at the intersection of neurosurgery, robotics, and intelligent systems. Robotic-assisted neurosurgery stands at the cusp of a new era, shifting from assistive technology to intelligent surgical partnership. Future trajectories point toward semi-autonomous surgical execution, real-time intraoperative diagnostics, and brain–computer interface procedures within AI-enabled smart operating rooms. This review provides an indispensable foundation for guiding innovation, clinical adoption, and policy frameworks in the next generation of neurosurgical robotics.

References

[1]Ball T, González-Martínez J, Zemmar A, Sweid A, Chandra S, VanSickle D, et al. Robotic applications in cranial neurosurgery: Current and future. Operative Neurosurgery, 2021, 21(6), 371-379. DOI: 10.1093/ONS/OPAB217

[2]Laguardia S, Piccioni A, Alonso Vera JE, Muqaddas A, Garcés M, Ambreen S, et al. A comprehensive review of the role of the latest minimally invasive neurosurgery techniques and outcomes for brain and spinal surgeries. Cureus, 2025,17(5), e84682-e84682. DOI: 10.7759/CUREUS.84682

[3]Bagga V, Bhattacharyya D. Robotics in neurosurgery. Annals of The Royal College of Surgeons of England, 2018, 100(6 sup), 23-26. DOI: 10.1308/rcsann.supp1.19

[4]Singh R, Wang K, Qureshi MB, Rangel IC, Brown NJ, Shahrestani S, et al. Robotics in neurosurgery: current prevalence and future directions. Surgical Neurology International, 2022, 13, 373. DOI: 10.25259/sni_522_2022

[5]Le Roux PD, Das H, Esquenazi S, Kelly PJ. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery, 2001, 48(3), 584-589. DOI: 10.1097/00006123-200103000-00026

[6]Sutherland GR, Latour I, Greer AD. Integrating an image-guided robot with intraoperative MRI. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(3), 59-65. DOI: 10.1109/emb.2007.910272

[7]Hu Y, Cai P, Zhang H, Adilijiang A, Peng J, Li Y, et al. A comparation between frame-based and robot-assisted in stereotactic biopsy. Frontiers in Neurology, 2022, 13, 928070. DOI: 10.3389/FNEUR.2022.928070

[8]Stumpo V, Staartjes VE, Klukowska AM, Golahmadi AK, Gadjradj PS, Schröder ML, et al. Global adoption of robotic technology into neurosurgical practice and research. Neurosurgical Review, 2020, 44(5), 2675-2687. DOI: 10.1007/s10143-020-01445-6

[9]Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical Engineering, 1988, 35(2), 153-160. DOI: 10.1109/10.1354

[10]Elsabeh R, Singh S, Shasho J, Saltzman Y, Abrahams JM. Cranial neurosurgical robotics. British Journal of Neurosurgery, 2021, 35(5), 532-540. DOI: 10.1080/02688697.2021.1950622

[11]Nathoo N, Cavuşoğlu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery, 2005, 56(3), 421-433. DOI: 10.1227/01.neu.0000153929.68024.cf

[12]Ghimire S, Shrestha S, Shrestha D, Awal S. Robotics in neurosurgery: the past, present and the future. Egyptian Journal of Neurosurgery, 2025, 40, 96. DOI: 10.1186/S41984-025-00395-9

[13]Geiger JD, Hirschl RB. Innovation in surgical technology and techniques: challenges and ethical issues. Seminars in Pediatric Surgery, 2015, 24(3), 115-121. DOI: 10.1053/j.sempedsurg.2015.02.008

[14]Ali MR, Rasmussen J, BhaskerRao B. Teaching robotic surgery: A stepwise approach. Surgical Endoscopy and Other Interventional Techniques, 2007, 21(6), 912-915. DOI: 10.1007/S00464-006-9045-3

[15]McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. American Journal of Surgery, 2004, 188(4A Suppl), 68S-75S. DOI: 10.1016/j.amjsurg.2004.08.004

[16]Ferrarese A, Pozzi G, Borghi F, Pellegrino L, Di Lorenzo P, Amato B, et al. Informed consent in robotic surgery: quality of information and patient perception. Open medicine (Warsaw, Poland), 2016, 11(1), 279-285. DOI: 10.1515/med-2016-0054

[17]Yang GZ, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, et al. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2017, 2(4):eaam8638. DOI: 10.1126/scirobotics.aam8638

[18]Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Child's Nervous System, 2018, 34(7), 1299-1309. DOI: 10.1007/s00381-018-3821-y

[19]Abou-Al-shaar H, Mallela AN, Corson D, Sweat J, Martínez JAG. Robotics in Epilepsy Surgery. Robotics in Neurosurgery: Principles and Practice. Cham: Springer International Publishing, 2022, 105-117. DOI: 10.1007/978-3-031-08380-8_6

[20]Takasuna H, Goto T, Kakizawa Y, Miyahara T, Koyama J, Tanaka Y. Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery. Journal of Clinical Neuroscience, 2012, 19(11), 1553-1557. DOI: 10.1016/J.JOCN.2012.01.033;

[21]Nogueira RG, Sachdeva R, Al-Bayati AR, Mohammaden MH, Frankel MR, Haussen DC. Robotic assisted carotid artery stenting for the treatment of symptomatic carotid disease: Technical feasibility and preliminary results. Journal of NeuroInterventional Surgery, 2020, 12(4), 341-344. DOI: 10.1136/NEURINTSURG-2019-015754;

[22]Tuliao PH, Kim SW, Rha KH. New technologies in robotic surgery: the Korean experience. Current Opinion in Urology, 2014, 24(1), 111-117. DOI: 10.1097/mou.0000000000000008

[23]Nishimura K. Current status of robotic surgery in Japan. Korean Journal of Urology, 2015, 56(3), 170. DOI: 10.4111/kju.2015.56.3.170

[24]Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongeot J, de Rougemont J. Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Stereotactic and Functional Neurosurgery, 1987, 50(1-6), 153-154. DOI: 10.1159/000100701

[25]Lin T, Xie Q, Peng T, Zhao X, Chen D. The role of robotic surgery in neurological cases: a systematic review on brain and spine applications. Heliyon, 2023, 9(12), e22523-e22523. DOI: 10.1016/j.heliyon.2023.e22523

[26]Zhou S, Gao Y, Li R, Wang H, Zhang M, Guo Y, et al. Neurosurgical robots in China: state of the art and future prospect. iScience, 2023, 26(11), 107983. DOI: 10.1016/j.isci.2023.107983

[27]Fiani B, Quadri SA, Farooqui M, Cathel A, Berman B, Noel J, et al. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurgical Review, 2020, 43(1), 17-25. DOI: 10.1007/s10143-018-0971-z

[28]Singh M, Ahamed TPW, Maurya VP, Gupta P, Bhaisora KS, Srivastava AK, et al. Stereotactic biopsy for brain lesions: Doing more with less. Journal of Neurosciences in Rural Practice, 2024, 15(1), 95-102. DOI: 10.25259/JNRP_258_2023,

[29]Pereira EA, Green AL, Nandi D, Aziz TZ. Stereotactic neurosurgery in the United Kingdom: The hundred years from Horsley to Hariz. Neurosurgery, 2008, 63(3), 594-606. DOI: 10.1227/01.NEU.0000316854.29571.40

[30]Fricke P, Matthies C, Nickl V, Breun M, Reich MM, Nickl RC. Accuracy of deep brain stimulation (DBS) lead placement: A comparative study of bilateral and four-lead implantation techniques. Interdisciplinary Neurosurgery, 2025, 40, 102042. DOI: 10.1016/J.INAT.2025.102042

[31]Jiang B, Karim Ahmed A, Zygourakis CC, Kalb S, Zhu AM, Godzik J, et al. Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chinese Neurosurgical Journal, 2018, 4, 23. DOI: 10.1186/S41016-018-0131-X

[32]Bertelsen A, Melo J, Sánchez E, Borro D. A review of surgical robots for spinal interventions. International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 9(4), 407-422. DOI: 10.1002/RCS.1469

[33]Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: A systematic review of the literature. Neurosurgical Focus, 2017, 42(5), E2. DOI: 10.3171/2017.2.FOCUS16544

[34]Onen MR, Naderi S. Robotic systems in spine surgery. Turkish Neurosurgery, 2014, 24(3), 305-311. DOI: 10.5137/1019-5149.JTN.8292-13.1

[35]Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. Robotics in neurosurgery: Evolution, current challenges, and compromises. Cancer Control, 2015, 22(3), 352-359. DOI: 10.1177/107327481502200314

[36]Sackier JM, Wang Y. Robotically assisted laparoscopic surgery - From concept to development. Surgical Endoscopy, 1994, 8(1), 63-66. DOI: 10.1007/BF02909496

[37]Taylor RH, Joskowicz L, Williamson B, Guéziec A, Kalvin A, Kazanzides P, et al. Computer-integrated revision total hip replacement surgery: Concept and preliminary results. Medical Image Analysis, 1999, 3(3), 301-319. DOI: 10.1016/S1361-8415(99)80026-7

[38]Biswas P, Sikander S, Kulkarni P. Recent advances in robot-assisted surgical systems. Biomedical Engineering Advances, 2023, 6, 100109. DOI: 10.1016/J.BEA.2023.100109

[39]Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Advancements in robotic surgery: A comprehensive overview of current utilizations and upcoming frontiers. Cureus, 2023, 15(12), e50415-e50415. DOI: 10.7759/CUREUS.50415

[40]Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. American Journal of Robotic Surgery, 2015, 1(1), 12-20. DOI: 10.1166/AJRS.2014.1006

[41]Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery: A current perspective. Annals of Surgery, 2004, 239(1), 14-21. DOI: 10.1097/01.SLA.0000103020.19595.7D

[42]Hey G, Guyot M, Carter A, Lucke-Wold B. Augmented reality in neurosurgery: A new paradigm for training. Medicina (B Aires), 2023, 59(10), 1721. DOI: 10.3390/MEDICINA59101721

[43]Cannizzaro D, Zaed I, Safa A, Jelmoni AJM, Composto A, Bisoglio A, et al. Augmented reality in neurosurgery, state of art and future projections. A systematic review. Frontiers in Surgery, 2022, 9, 864792. DOI: 10.3389/FSURG.2022.864792

[44]Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in oral & maxillofacial surgery. BMC Oral Health, 2019, 19(1), 238. DOI: 10.1186/S12903-019-0937-8

[45]Cizmic A, Mitra AT, Preukschas AA, Kemper M, Melling NT, Mann O, et al. Artificial intelligence for intraoperative video analysis in robotic-assisted esophagectomy. Surgical Endoscopy, 2025, 39(5), 2774-2783. DOI: 10.1007/S00464-025-11685-6

[46]Tang KS, Cheng DL, Mi E, Greenberg PB. Augmented reality in medical education: a systematic review. Canadian Medical Education Journal, 2020, 11(1), e81-e96. DOI: 10.36834/CMEJ.61705

[47]Wah JNK. The rise of robotics and AI-assisted surgery in modern healthcare. Journal of Robotic Surgery, 2025, 19(1), 311. DOI: 10.1007/S11701-025-02485-0

[48]Ansari ZJ, Aher A, Thitame SN. Advancements in robotics and ai transforming surgery and rehabilitation. Journal of Pharmacy and Bioallied Sciences, 2025, 17(Suppl 1), S46-S48. DOI: 10.4103/JPBS.JPBS_1937_24

[49]George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: From skepticism to standard of care. Journal of the Society of Laparoscopic & Robotic Surgeons, 2018, 22(4), e2018.00039. DOI: 10.4293/JSLS.2018.00039

[50]Asciak L, Kyeremeh J, Luo X, Kazakidi A, Connolly P, Picard F, et al. Digital twin assisted surgery, concept, opportunities, and challenges. NPJ Digital Medicine, 2025, 8(1), 32. DOI: 10.1038/S41746-024-01413-0

[51]Bellos T, Manolitsis I, Katsimperis S, Juliebø-Jones P, Feretzakis G, Mitsogiannis I, et al. Artificial intelligence in urologic robotic oncologic surgery: A narrative review. Cancers (Basel), 2024, 16(9), 1775. DOI: 10.3390/CANCERS16091775

[52]Staub BN, Sadrameli SS. The use of robotics in minimally invasive spine surgery. Journal of Spine Surgery, 2019, 5(Suppl 1), 31-40. DOI: 10.21037/JSS.2019.04.16

[53]Naik A, MacInnis BR, Shaffer A, Krist DT, Smith AD, Garst JR, et al. Trends in technology for pedicle screw placement: A temporal meta-analysis. Spine (Phila Pa 1976), 2023, 48(11), 791-799. DOI: 10.1097/BRS.0000000000004604

[54]Danilov GV, Shifrin MA, Kotik KV, Ishankulov TA, Orlov YN, Kulikov AS, Potapov AA. Artificial intelligence in neurosurgery: A systematic review using topic modeling. part i: Major research areas. Sovremennye Tehnologii v Medicine, 2020, 12(5), 106-113. DOI: 10.17691/STM2020.12.5.12

[55]Theodore N, Ahmed AK. The history of robotics in spine surgery. Spine (Phila Pa 1976), 2018, 43, S23-S23. DOI: 10.1097/BRS.0000000000002553

[56]Łajczak P, Żerdziński K, Jóźwik K, Laskowski M, Dymek M. Enhancing precision and safety in spinal surgery: A comprehensive review of robotic assistance technologies. World Neurosurgery, 2024, 191, 109-116. DOI: 10.1016/J.WNEU.2024.08.051

[57]Malhotra A, Kalra VB, Wu X, Grant R, Bronen RA, Abbed KM. Imaging of lumbar spinal surgery complications. Insights into Imaging, 2015, 6(6), 579-590. DOI: 10.1007/S13244-015-0435-8

[58]Liounakos JI, Chenin L, Theodore N, Wang MY. Robotics in spine surgery and spine surgery training. Operative Neurosurgery, 2021, 21(2), 35-40. DOI: 10.1093/ONS/OPAA449

[59]Chumnanvej, S., Pillai, B.M., Suthakorn, J., Chumnanvej, S.: Revised in-depth meta-analysis on the efficacy of robot-assisted versus traditional free-hand pedicle screw insertion. Laparoscopic, Endoscopic and Robotic Surgery, 2024, 7(4), 155-165. DOI: 10.1016/J.LERS.2024.08.002

[60]Li T, Badre A, Alambeigi F, Tavakoli M. Robotic systems and navigation techniques in orthopedics: A historical review. Applied Sciences (Switzerland), 2023, 13(17), 9768. DOI: 10.3390/APP13179768

[61]Fujie MG, Zhang B. State-of-the-art of intelligent minimally invasive surgical robots. Frontiers in Medicine, 2020, 14(4), 404-416. DOI: 10.1007/S11684-020-0743-3

[62]Essomba T, Laribi MA, Sandoval J, Wu CT, Zeghloul S. Robotic-assisted platform for spinal surgery: A preliminary study. Mechanisms and Machine Science, 2021, 102, 192-198. DOI: 10.1007/978-3-030-75259-0_21

[63]Haik NV, Burgess AE, Talbot NC, Luther P, Bridges JR, Folse M, et al. Robotic systems in spinal surgery: A review of accuracy, radiation exposure, hospital readmission rate, cost, and adverse events. World Neurosurgery, 2025, 195, 123721. DOI: 10.1016/j.wneu.2025.123721

[64]Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. Journal of Neurosurgery, 2013, 119(2), 301-306. DOI: 10.3171/2013.4.JNS122324

[65]Fenoy AJ, Simpson RK Jr. Risks of common complications in deep brain stimulation surgery: Management and avoidance - Clinical article. Journal of Neurosurgery, 2014, 120(1), 132-139. DOI: 10.3171/2013.10.JNS131225

[66]Gong S, Tao Y, Jin H, Sun X, Liu Y, Wang S, et al. Assessment of deep brain stimulation implantation surgery: A practical scale. World Neurosurgery, 2020, 134, e1121-e1129. DOI: 10.1016/J.WNEU.2019.11.117

[67]Matur AV, Palmisciano P, Duah HO, Chilakapati SS, Cheng JS, Adogwa O. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis. Spine Journal, 2023, 23(2), 197-208. DOI: 10.1016/j.spinee.2022.10.006

[68]Huang Z, Meng L, Bi X, Xie Z, Liang W, Huang J. Efficacy and safety of robot-assisted deep brain stimulation for Parkinson’s disease: a meta-analysis. Frontiers in Aging Neuroscience, 2024, 16, 1419152. DOI: 10.3389/FNAGI.2024.1419152/FULL

Downloads

Published

2025-11-25

Issue

Section

Articles

How to Cite

Guo, Y., Xuanwei Dong, Min Liu, Dongsheng Liu, & Jianxin Wang. (2025). Robotic-Assisted Systems in Minimally Invasive Neurosurgical Techniques: A Review. Neuroscience Research and Clinical Practice, 1(1), 27-40. https://doi.org/10.64229/msvbj529