The Gut-Brain Axis: Emerging Molecular Insights and Therapeutic Opportunities in Neurological Disorders
DOI:
https://doi.org/10.64229/84x8kg24Keywords:
Gut-brain axis, Microbiota, Neuroinflammation, Short-chain fatty acids, Parkinson's disease, Alzheimer's disease, Multiple sclerosis, Autism spectrum disorderAbstract
The microbiota-gut-brain axis (MGBA) represents a pivotal communication network in human health, and its disruption is increasingly implicated in the pathophysiology of neurological disorders. The primary objective of this review is to provide a critical synthesis of the molecular mechanisms governing this connection and its therapeutic implications. We systematically evaluate the neural, immune, endocrine, and metabolic pathways that mediate gut-brain communication. Furthermore, we analyze and synthesize evidence from primary clinical and preclinical studies to assess the role of gut dysbiosis in the pathogenesis of Parkinson's disease, Alzheimer's disease, multiple sclerosis, and autism spectrum disorder. Finally, we critically examine the current landscape of microbiome-targeted therapies, including probiotics, dietary modifications, and fecal microbiota transplantation. By integrating current research, this review identifies key knowledge gaps and highlights the transformative potential of targeting the gut microbiome as a novel therapeutic strategy for neurological disorders.
References
[1]Miller I. The gut–brain axis: historical reflections. Microbial Ecology in Health and Disease, 2018, 29(2), 1542921. DOI: 10.1080/16512235.2018.1542921
[2]Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, et al. Microbiota revolution: How gut microbes regulate our lives. World Journal of Gastroenterology, 2023, 29(28), 4368-4384. DOI: 10.3748/wjg.v29.i28.4368
[3]Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 2019, 76(3), 473-493. DOI: 10.1007/s00018-018-2943-4
[4]Savulescu-Fiedler I, Benea SN, Căruntu C, Nancoff AS, Homentcovschi C, Bucurica S. Rewiring the brain through the gut: Insights into microbiota–nervous system interactions. Current Issues in Molecular Biology, 2025, 47(7), 489. DOI: 10.3390/cimb47070489
[5]Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, et al. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Frontiers in Neuroscience, 2024, 18, 1501134. DOI: 10.3389/fnins.2024.1501134
[6]Almahal ZH, Hasan A, Razzak SA, Nzila A, Uddin S. Molecular perspective of dietary influences on the gut microbiome alongside neurological health: Exploring the gut-brain axis. ACS Chemical Neuroscience, 2025, 16(11), 1996-2012. DOI: 10.1021/acschemneuro.5c00058
[7]Aeschlimann L. Gut microbiome composition: a biological marker of the vulnerability to develop an alcohol use disorder: Université de Lausanne, Faculté de biologie et médecine, 2024.
[8]Reveley J. Somatic multiplicities: The microbiome-gut-brain axis and the neurobiologized educational subject. Educational Philosophy and Theory, 2024, 56(1), 52-62. DOI:10.1080/00131857.2023.2215427
[9]Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Frontiers in Immunology, 2025, 16, 1533343. DOI: 10.3389/fimmu.2025.1533343
[10]BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598(7879), 86-102. DOI: 10.1038/s41586-021-03950-0
[11]Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, et al. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cellular Oncology, 2024, 47(1), 1-17. DOI: 10.1007/s13402-023-00857-y
[12]Johnson BK. Physiology of the autonomic nervous system. Basic sciences in anesthesia, Springer, 2025. 377-386. DOI, 10.1007/978-3-319-62067-1_19
[13]Bertollo AG, Santos CF, Bagatini MD, Ignácio ZM. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Frontiers in Neuroscience, 2025, 19, 1541075. DOI, 10.3389/fnins.2025.1541075
[14]Lei W, Cheng Y, Liu X, Gao J, Zhu Z, Ding W, et al. Gut microbiota-driven neuroinflammation in alzheimer's disease: From mechanisms to therapeutic opportunities. Frontiers in Immunology, 2025, 16, 1582119.DOI: 10.3389/fimmu.2025.1582119
[15]Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, et al. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon, 2024, 10(13). DOI: 10.1016/j.heliyon.2024.e34092
[16]Gusenbauer M, Haddaway NR. Which academic search systems are suitable for systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods, 2020, 11(2), 181-217. DOI: 10.1002/jrsm.1378
[17]Harari MB, Parola HR, Hartwell CJ, Riegelman A. Literature searches in systematic reviews and meta-analyses: A review, evaluation, and recommendations. Journal of Vocational Behavior, 2020, 118, 103377. DOI: 10.1016/j.jvb.2020.103377
[18]Wanyama SB, McQuaid RW, Kittler M. Where you search determines what you find: the effects of bibliographic databases on systematic reviews. International Journal of Social Research Methodology, 2022, 25(3), 409-422. DOI: 10.1080/13645579.2021.1892378
[19]Koumpouli D, Koumpouli V, Koutelidakis AE. The gut–brain axis and neurodegenerative diseases: The role of nutritional interventions targeting the gut microbiome—a systematic review. Applied Sciences, 2025, 15(10), 5558. DOI: 10.3390/app15105558
[20]Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: the potential of therapeutic targeting of the microbiome. International Journal of Molecular Sciences, 2023, 24(11), 9577. DOI: 10.3390/ijms24119577
[21]Dziedziak M, Mytych A, Szyller HP, Lasocka M, Augustynowicz G, Szydziak J, et al. Gut microbiota in psychiatric and neurological disorders: Current insights and therapeutic implications. Biomedicines, 2025, 13(9), 2104. DOI: 10.3390/biomedicines13092104
[22]Anwar F. The role of gut-brain axis in neurological disorders: A comprehensive review. Bio Sciences Reviews, 2023, 3(1), 52-64.
[23]Valladolid-Acebes I. Hippocampal leptin resistance and cognitive decline: Mechanisms, therapeutic strategies and clinical implications. Biomedicines, 2024, 12(11), 2422. DOI: 10.3390/biomedicines12112422
[24]Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, et al. Gut microbiota metabolites in major depressive disorder—Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50. DOI: 10.3390/metabo12010050
[25]Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Critical Reviews in Food Science and Nutrition, 2025, 65(22), 4264-4692. DOI: 10.1080/10408398.2024.2390556
[26]Wang J, Cheng W, Yang R. Nervous system–gut microbiota–immune system axis: future directions for preventing tumor. Frontiers in Immunology, 2025, 16, 1535955. DOI: 10.3389/fimmu.2025.1535955
[27]Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microbial Ecology in Health and Disease, 2016, 27(1), 30971. DOI: 10.3402/mehd.v27.30971
[28]Wang Y, Duan C, Du X, Zhu Y, Wang L, Hu J, et al. Vagus nerve and gut-brain communication. The Neuroscientist, 2025, 31(3), 262-378. DOI: 10.1177/10738584241259702
[29]Mallik B, Dubey P, Bhat S, Mishra T, Sharma AK, Kanchan S, et al. Brain microbiome in health and disease: A multi-omics perspective. Multi-Omics in Biomedical Sciences and Environmental Sustainability: Applications and Recent Advances, Springer, 2025, 239-269. DOI:10.1007/978-981-96-7067-3_10
[30]Tamayo M, Olivares M, Ruas-Madiedo P, Margolles A, Espín J, Medina I, et al. How diet and lifestyle can fine-tune gut microbiomes for healthy aging. Annual Review of Food Science and Technology, 2024, 15(1), 283-305. DOI: 10.1146/annurev-food-072023-034458
[31]Momen YS, Mishra J, Kumar N. Brain-gut and microbiota-gut-brain communication in type-2 diabetes linked alzheimer’s disease. Nutrients, 2024, 16(15), 2558. DOI: 10.3390/nu16152558
[32]Welcome MO. Neural secretions and regulation of gut functions. Gastrointestinal Physiology, Springer, 2018, 527-684. DOI: 10.1007/978-3-319-91056-7_9
[33]Rummel GM. The acute effects of E. faecium probiotic treatment on mouse enteric and central nervous system activity. Iowa State University, 2024.
[34]Sharkey KA, Mawe GM. The enteric nervous system. Physiological Reviews, 2023, 103(2), 1487-564. DOI: 10.1152/physrev.00018.2022
[35]Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the bottom-up: chemotherapy and gut-brain axis dysregulation. Frontiers in Behavioral Neuroscience, 2018, 12, 104. DOI: 10.3389/fnbeh.2018.00104
[36]Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetologica, 2023, 60(8), 1007-1017. DOI: 10.1007/s00592-023-02088-x
[37]Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: A narrative review of the emerging literature. Frontiers in Immunology, 2024, 15, 1365673. DOI: 10.3389/fimmu.2024.1365673
[38]Paray BA, Albeshr MF, Jan AT, Rather IA. Leaky gut and autoimmunity: An intricate balance in individuals health and the diseased state. International Journal of Molecular Sciences, 2020, 21(24), 9770. DOI: 10.3390/ijms21249770
[39]Huang X, Hussain B, Chang J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neuroscience & Therapeutics, 2021, 27(1), 36-47. DOI: 10.1111/cns.13569
[40]Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, et al. The gut-microglia connection: implications for central nervous system diseases. Frontiers in Immunology, 2018, 9, 2325. DOI: 10.3389/fimmu.2018.02325
[41]Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson’s disease and the metal–microbiome–gut–brain axis: a systems toxicology approach. Antioxidants, 2021, 11(1), 71. DOI: 10.3390/antiox11010071
[42]Verma A, Inslicht SS, Bhargava A. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders. Cells, 2024, 13(17), 1436. DOI: 10.3390/cells13171436
[43]Dicks LM. Gut bacteria and neurotransmitters. Microorganisms, 2022, 10(9), 1838. DOI: 10.3390/microorganisms10091838
[44]Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. The Journal of Clinical Investigation, 2021, 131(18), e143768. DOI: 10.1172/JCI143768
[45]Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. Gut reactions: How the blood–brain barrier connects the microbiome and the brain. Experimental Biology and Medicine, 2018, 243(2), 159-65. DOI: 10.1177/1535370217743766
[46]Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology, 2019, 88, 1-9. DOI: 10.1016/j.tifs.2019.03.005
[47]Socodato R, Relvas JoB. Neuroinflammation revisited through the microglial lens. Neural Regeneration Research, 2025, 20(7), 1989-1990. DOI: 10.4103/NRR.NRR-D-24-00284
[48]Singh SV, Ganguly R, Jaiswal K, Yadav AK, Kumar R, Pandey AK. Molecular signalling during cross talk between gut brain axis regulation and progression of irritable bowel syndrome: A comprehensive review. World Journal of Clinical Cases, 2023, 11(19), 4458. DOI: 10.12998/wjcc.v11.i19.4458
[49]Han J, Hu S, Zhao X, Ding L, Yin J, Liu J, et al. High GABA-producing Lactococcus lactis ZFM559 and its derived GABA alleviates chronic unpredictable mild stress (CUMS)-induced depression via the “microbiota-brain” axis. Food & Function, 2025. DOI:10.1039/D5FO02582F
[50]Hwang YK, Oh JS. Interaction of the Vagus Nerve and Serotonin in the Gut–Brain Axis. International Journal of Molecular Sciences, 2025, 26(3), 1160. DOI: 10.3390/ijms26031160
[51]Olsen AS, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biology, 2017, 7(5), 170069. DOI: 10.1098/rsob.170069
[52]González-Sanmiguel J, Schuh CM, Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex interaction between resident microbiota and misfolded proteins: role in neuroinflammation and neurodegeneration. Cells, 2020, 9(11), 2476. DOI: 10.3390/cells9112476
[53]Travagli RA, Browning KN, Camilleri M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nature Reviews Gastroenterology & Hepatology, 2020, 17(11), 673-685. DOI: 10.1038/s41575-020-0339-z
[54]Yemula N, Dietrich C, Dostal V, Hornberger M. Parkinson’s disease and the gut: symptoms, nutrition, and microbiota. Journal of Parkinson’s Disease, 2021, 11(4), 1491-505. DOI: 10.3233/JPD-212707
[55]Skjærbæk C, Knudsen K, Horsager J, Borghammer P. Gastrointestinal dysfunction in Parkinson’s disease. Journal of Clinical Medicine, 2021, 10(3), 493. DOI: 10.1016/S1474-4422(15)00007-1
[56]Riegelman E, Xue KS, Wang JS, Tang L. Gut–brain axis in focus: polyphenols, microbiota, and their influence on α-synuclein in Parkinson’s disease. Nutrients, 2024, 16(13), 2041. DOI: 10.3390/nu16132041
[57]Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan E-K, Pettersson S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-293. DOI: 10.1093/brain/awab156
[58]Chung BS, Yang K, Park C, Ryu T. Prolonged intestinal ethanol absorption and oxidative stress: Revisiting the gut–liver axis in alcohol-associated disease. International Journal of Molecular Sciences, 2025, 26(12), 5442. DOI: 10.3390/ijms26125442
[59]Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Frontiers in Cellular and Infection Microbiology, 2024, 14, 1348279. DOI: 10.3389/fcimb.2024.1348279
[60]Marizzoni M, Mirabelli P, Mombelli E, Coppola L, Festari C, Lopizzo N, et al. A peripheral signature of Alzheimer’s disease featuring microbiota-gut-brain axis markers. Alzheimer's Research & Therapy, 2023, 15(1), 101. DOI: 10.1186/s13195-023-01218-5
[61]Sharma S, Gupta M, Sharma S. Exploring thiophene-based pharmacophores as emerging therapeutics for neurodegenerative disorders. Critical Reviews in Analytical Chemistry, 2025, 1-29. DOI: 10.1080/10408347.2025.2554239
[62]Donaldson AI, Fyfe CL, Martin JC, Smith EE, Horgan GW, Myint PK, et al. Aging Gut-Brain interactions: Pro-inflammatory gut bacteria are elevated in fecal samples from individuals living with alzheimer’s dementia. Geriatrics, 2025, 10(2), 37. DOI: 10.3390/geriatrics10020037
[63]Merighi S, Nigro M, Travagli A, Gessi S. Microglia and alzheimer’s disease. International Journal of Molecular Sciences, 2022, 23(21), 12990. DOI: 10.3390/ijms232112990
[64]Yousefi B, Babaeizad A, Banihashemian SZ, Feyzabadi ZK, Dadashpour M, Pahlevan D, et al. Gastrointestinal tract, microbiota and multiple sclerosis (MS) and the link between gut microbiota and CNS. Current Microbiology, 2023, 80(1), 38. DOI: 10.1007/s00284-022-03150-7
[65]Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Experimental & Molecular Medicine, 2017, 49(5), e340. DOI: 10.1038/emm.2017.36
[66]Garabatos N, Santamaria P. Gut microbial antigenic mimicry in autoimmunity. Frontiers in Immunology, 2022, 13, 873607. DOI: 10.3389/fimmu.2022.873607
[67]Fakruddin M, Amin T, Shishir MA, Jameel RM, Bari MM, Shameem NF, et al. Early-life microbiome and neurodevelopmental disorders: A systematic review and meta-analysis. Current Neuropharmacology, 2025. DOI: 10.2174/011570159X360129250508113618
[68]Holingue C, Newill C, Lee LC, Pasricha PJ, Daniele Fallin M. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Research, 2018, 11(1), 24-36. DOI: 10.1002/aur.1854
[69]Wang J, Ma B, Wang J, Zhang Z, Chen O. Global prevalence of autism spectrum disorder and its gastrointestinal symptoms: A systematic review and meta-analysis. Frontiers in Psychiatry, 2022, 13, 963102. DOI: 10.3389/fpsyt.2022.963102
[70]Settanni CR, Bibbò S, Ianiro G, Rinninella E, Cintoni M, Mele MC, et al. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Review of Gastroenterology & Hepatology, 2021, 15(6), 599-622. DOI: 10.1080/17474124.2021.1869938
[71]Eltokhi A, Janmaat IE, Genedi M, Haarman BC, Sommer IE. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. Journal of Neuroscience Research, 2020, 98(7):1335-1369. DOI: 10.1002/jnr.24616
[72]Paolicelli RC, Ferretti MT. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Frontiers in Synaptic Neuroscience, 2017, 9, 9. DOI: 10.3389/fnsyn.2017.00009
[73]Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1(2), 109-133. DOI: 10.1002/fft2.25
[74]Sharma AR, Batra G, Saini L, Sharma S, Mishra A, Singla R, et al. Valproic acid and propionic acid modulated mechanical pathways associated with autism spectrum disorder at prenatal and neonatal exposure. CNS & Neurological Disorders-Drug Targets, 2022, 21(5), 399-408. DOI: 10.2174/1871527320666210806165430
[75]Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Movement Disorders, 2015, 30(3), 350-8. DOI: 10.1002/mds.26069
[76]Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 2017, 7(1), 13537. DOI: 10.1038/s41598-017-13601-y
[77]Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, 7(1), 12015.
[78]Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 2011, 11(1), 22. DOI: 10.1186/1471-230X-11-22
[79]Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. Bioscience of Microbiota, Food and Health, 2024, 43(4), 321-328. DOI: 10.12938/bmfh.2024-022
[80]Dahiya D, Nigam PS. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—brain axis and cognition: restoration by intake of probiotics and synbiotics. International Journal of Molecular Sciences, 2023, 24(4), 3074. DOI: 10.3390/ijms24043074
[81]Singh MK, Thase ME. Current progress in targeted pharmacotherapy to treat symptoms of major depressive disorder: moving from broad-spectrum treatments to precision psychiatry. CNS Spectrums, 2025, 1-45. DOI: 10.1017/S1092852925000094
[82]Sharma VK. Diabetes-induced depression: unravelling the role of gut dysbiosis. Journal of Diabetes & Metabolic Disorders, 2025, 24(1), 129.DOI: 10.1007/s40200-025-01643-3
[83]Dziedzic A, Maciak K, Bliźniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. The power of psychobiotics in depression: A modern approach through the microbiota–gut–brain axis: A literature review. Nutrients, 2024, 16(7), 1054. DOI: 10.3390/nu16071054
[84]Xiang S, Ji JL, Li S, Cao XP, Xu W, Tan L, et al. Efficacy and safety of probiotics for the treatment of Alzheimer's disease, mild cognitive impairment, and Parkinson's disease: a systematic review and meta-analysis. Frontiers in Aging Neuroscience, 2022, 14, 730036. DOI: 10.3389/fnagi.2022.730036
[85]Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, et al. Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association, 2019, 118, S23-S31. DOI: 10.1016/j.jfma.2018.08.011
[86]Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, et al. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clinical Microbiology Reviews, 2024, 37(2), e0013523. DOI: 10.1128/cmr.00135-23
[87]Vendrik KE, Ooijevaar RE, De Jong PR, Laman JD, Van Oosten BW, Van Hilten JJ, et al. Fecal microbiota transplantation in neurological disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 98. DOI: 10.3389/fcimb.2020.00098
[88]Liber A, Więch M. The impact of fecal microbiota transplantation on gastrointestinal and behavioral symptoms in children and adolescents with autism spectrum disorder: A systematic review. Nutrients, 2025, 17(13), 2250. DOI: 10.3390/nu17132250
[89]Johnsen PH. The effect of faecal microbiota transplantation in irritabel bowel syndrom. A Double Blind, Randomized Placebo Controlled Single Centre Study. 2020.
[90]Nie T, You L, Tang F, Duan Y, Nepovimova E, Kuca K, et al. Microbiota-gut-brain axis in age-related neurodegenerative diseases. Current Neuropharmacology, 2025, 23(5):524-546. DOI: 10.2174/1570159X23666241101093436.
[91]Deleu S, Becherucci G, Godny L, Mentella MC, Petito V, Scaldaferri F. The key nutrients in the mediterranean diet and their effects in inflammatory bowel disease: a narrative review. Nutrients, 2024, 16(23), 4201. DOI: 10.3390/nu16234201
[92]Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Internal and Emergency Medicine, 2024, 19(2), 275-293. DOI: 10.1007/s11739-023-03374-w
[93]Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients, 2023, 15(12), 2749. DOI: 10.3390/nu15122749
[94]Mayorgas A, Dotti I, Salas A. Microbial metabolites, postbiotics, and intestinal epithelial function. Molecular Nutrition & Food Research, 2021, 65(5), 2000188. DOI: 10.1002/mnfr.202000188
[95]Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, et al. Emerging paradigms in inflammatory disease management: Exploring bioactive compounds and the gut microbiota. Brain Sciences, 2023, 13(8), 1226. DOI: 10.3390/brainsci13081226
[96]Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Molecular Systems Biology, 2021, 17(3), e10116. DOI: 10.15252/msb.202010116
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kamaljeet Singh, Suman Samanta, Rakesh Chandra Kalita, Saminesh Kumar, Shivank Sharma (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.